3. WEC Model Architecture

This section provides an overview of how a typical WecOptTool model is programmed. WecOptTool is currently structured as a set of examples, all of which follow a similar format and can thus rely on common utilities. It is envisioned that the structure of WecOptTool may some day be consolidated based on experience in developing these examples.

3.1. Introduction

The WaveBot example [3] will be used to illustrate these concepts in more detail. The process for performing a study in WecOptTool can be broken into three distinct steps, which correlate to three files in the WaveBot example:

  • Designing the device - designDevice.m creates the device based on a set of design variables
  • Simulating device response - simulateDevice.m simulates device performance
  • Reporting results - Performance.m a class for storing and plotting performance data

The diagram below shows the responsibilities that each of these steps take within the context of the overall work-flow. The Designing the device step takes user inputs regarding the configuration of the device and calculates the hydrodynamic parameters of that design. In the diagram below, the processes bounded by rectangle 1 are encapsulated by this step. Simulating device response takes information about the sea state and controller type, and finds the optimal power output for the given hydrodynamic parameters, encapsulating the processes in rectangle 2. Finally, the processes in rectangle 3 will use metrics that are calculated in the Reporting results step, e.g., to find the average power.

Steps for implementing the WecOptTool functionality

3.2. Designing the device

See the entire file
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function hydro = designDevice(type, varargin) 
    % WaveBot   WEC based on the Sandia "WaveBot" device.
    %
    % The WaveBot is a model-scale wave energy converter (WEC) tested in
    % the Navy's Manuevering and Sea Keeping (MASK) basin. Reports and
    % papers about the WaveBot are available at advweccntrls.sandia.gov.
    
    switch type
        
        case 'existing'
            hydro = WecOptTool.geometry.existingNEMOH(varargin{:});
        case 'scalar'
            hydro = getHydroScalar(varargin{:});
        case 'parametric'
            hydro = getHydroParametric(varargin{:});
        otherwise
            error('WecOptTool:UnknownGeometryType',...
                'Invalid geometry type')
    end
    
end

function hydro = getHydroScalar(folder, lambda, w)
                   
    if w(1) == 0
    error('WecOptTool:UnknownGeometryType',...
                'Invalid frequency vector')     % TODO - more checks
    end
    
    r = lambda * [0, 0.88, 0.88, 0.35, 0];
    z = lambda * [0.2, 0.2, -0.16, -0.53, -0.53];

    % Mesh
    ntheta = 20;
    nfobj = 200;
    zG = 0;
    
    meshes = WecOptTool.mesh("AxiMesh",    ...
                             folder,       ...
                             r,            ...
                             z,            ...
                             ntheta,       ...
                             nfobj,        ...
                             zG,           ...
                             1);
    
    hydro = WecOptTool.solver("NEMOH", folder, meshes, w);
           
end

function hydro = getHydroParametric(folder, r1, r2, d1, d2, w)
               
    if w(1) == 0
        w = w(2:end);
    end
    
    r = [0, r1, r1, r2, 0];
    z = [0.2, 0.2, -d1, -d2, -d2];

    % Mesh
    ntheta = 20;
    nfobj = 200;
    zG = 0;
    
    meshes = WecOptTool.mesh("AxiMesh",    ...
                                         folder,       ...
                                         r,            ...
                                         z,            ...
                                         ntheta,       ...
                                         nfobj,        ...
                                         zG,           ...
                                         1);
    
    hydro = WecOptTool.solver("NEMOH", folder, meshes, w);
           
end


% Copyright 2020 National Technology & Engineering Solutions of Sandia, 
% LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the 
% U.S. Government retains certain rights in this software.
%
% This file is part of WecOptTool.
% 
%     WecOptTool is free software: you can redistribute it and/or modify
%     it under the terms of the GNU General Public License as published by
%     the Free Software Foundation, either version 3 of the License, or
%     (at your option) any later version.
% 
%     WecOptTool is distributed in the hope that it will be useful,
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%     GNU General Public License for more details.
% 
%     You should have received a copy of the GNU General Public License
%     along with WecOptTool.  If not, see <https://www.gnu.org/licenses/>.

The Designing the device step codifies the user inputs for the Geometry, Power take off, and Kinematics of the WEC. With some important caveats, this step can be seen as analogous to building the physical device. This step can include [1] generating a panelized representation of the WEC’s hull and calling a BEM code (e.g., NEMOH) to estimate the hydrodynamic coefficients. We can see from the signature of designDevice.m that it will return a Hydrodynamics object.

hydro = designDevice(type, varargin)

3.3. Simulating device response

See the entire file
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
function performance = simulateDevice(hydro, seastate, controlType, options)
    % simulateDevice   WEC based on the Sandia "WaveBot" device.
    %
    % The WaveBot is a model-scale wave energy converter (WEC) tested in
    % the Navy's Manuevering and Sea Keeping (MASK) basin. Reports and
    % papers about the WaveBot are available at advweccntrls.sandia.gov.
    %
    % Arguments:
    %  hydro        structure containing BEM results
    %  seastate     sea state object
    %  controlType  controller type:
    %                   complex conjugate:      'CC'
    %                   proportional damping:   'P'
    %                   pseudo-spectral:        'PS'
    %  name-value pairs
    %  interpMethod (optional) method to use for linear interpolation
    %  Zmax         (only valid for controlType == 'controlType') maximum
    %               displacement
    %  Fmax         (only valid for controlType == 'controlType') maximum
    %               PTO force
    %
    % See also WecOptTool.SeaState, interp1
    
    arguments
        hydro (1,1) WecOptTool.Hydrodynamics
        seastate (1,:) WecOptTool.SeaState
        controlType (1,1) string
        options.Zmax (1,:) double  = Inf % TODO - can be assymetric, need to check throughout
        options.Fmax (1,:) double = Inf
        options.interpMethod (1,1) string = 'linear'
    end
    
    dynModel = getDynamicsModel(hydro, seastate,...
        options.interpMethod);
    
    switch controlType
        case 'CC'
            performance = complexCongugateControl(dynModel);
        case 'P'
            performance = dampingControl(dynModel);
        case 'PS'
            performance = psControl(dynModel,options.Zmax, options.Fmax);
            
    end
end
        
function dynModel = getDynamicsModel(hydro, SS, interpMethod)
    
    % Mass
    mass = hydro.Vo * hydro.rho;

    % Restoring
    K = hydro.C(3,3) * hydro.g * hydro.rho;

    function result = interp_mass(hydro, dof1, dof2, w)
        result = interp1(hydro.w,                           ...
                         squeeze(hydro.A(dof1, dof2, :)),   ...
                         w,                                 ...
                         interpMethod,                          ...
                         0);
    end

    function result = interp_rad(hydro, dof1, dof2, w)
        result = interp1(hydro.w,                           ...
                         squeeze(hydro.B(dof1, dof2, :)),   ...
                         w,                                 ...
                         interpMethod,                          ...
                         0);
    end

    function result = interp_ex(hydro, dof, w)

        h = squeeze(hydro.ex(dof, 1, :));
        result = interp1(hydro.w, h ,w, interpMethod, 0);

    end

    w = hydro.w(:);
    dw = w(2) - w(1);
    
    % Calculate wave amplitude
    waveAmpSS = SS.getAmplitudeSpectrum();
    waveAmp = interp1(SS.w, waveAmpSS, w, interpMethod, 'extrap');

    % Row vector of random phases
    ph = rand(size(waveAmp)) * 2 * pi;

    % Wave height in frequency domain
    eta_fd = waveAmp .* exp(1i * ph);
    eta_fd = eta_fd(:);
    % radiation damping FRF
    B = interp_rad(hydro, 3, 3, w) * hydro.rho .* w;

    % added mass FRF
    A = interp_mass(hydro, 3, 3, w) * hydro.rho;

    % friction
    Bf = max(B) * 0.1;      % TODO - make this adjustable

    % intrinsic impedance
    Zi = B + Bf + 1i * (w .* (mass + A) - K ./ w);

    % Excitation Forces
    Hex = interp_ex(hydro, 3, w) * hydro.g * hydro.rho;
    F0 = Hex .* eta_fd;

    dynModel.mass = mass;
    dynModel.K = K;
    dynModel.w = w;
    dynModel.eta_fd = eta_fd;
    dynModel.dw = dw;
    dynModel.wave_amp = waveAmp;
    dynModel.ph = ph;
    dynModel.B = B;
    dynModel.A = A;
    dynModel.Bf = Bf;
    dynModel.Zi = Zi;
    dynModel.Hex = Hex;
    dynModel.F0 = F0;
    
end

function myPerf = complexCongugateControl(dynModel,~)
    
    myPerf = Performance();
            
    myPerf.Zpto = conj(dynModel.Zi);
    
    % velocity
    myPerf.u = dynModel.F0 ./ (myPerf.Zpto + dynModel.Zi);
    
    % position
    myPerf.pos = myPerf.u ./ (1i * dynModel.w);
    
    % PTO force
    myPerf.Fpto = -1 * myPerf.Zpto .* myPerf.u;
    
    % power
    myPerf.pow = 0.5 * myPerf.Fpto .* conj(myPerf.u);
    
    myPerf.ph = dynModel.ph;
    myPerf.w = dynModel.w;
    myPerf.eta = dynModel.eta_fd;
    myPerf.F0 = dynModel.F0;

end

function myPerf = dampingControl(dynModel,~)
    
    myPerf = Performance();
            
    P_max = @(b) -0.5*b*sum(abs(dynModel.F0 ./ ...
                                (dynModel.Zi + b)).^2);
                            
    % Solve for damping to produce most power (can do analytically for a
    % single frequency, but must use numerical solution for spectrum). Note
    % that fval is the sum of power absorbed (negative being "good") - the
    % following should be true: -1 * fval = sum(pow), where pow is the
    % frequency dependent array calculated below.
    [B_opt, ~] = fminsearch(P_max, max(real(dynModel.Zi)));

    % PTO impedance
    myPerf.Zpto = complex(B_opt * ones(size(dynModel.Zi)),0);
    
    % velocity
    myPerf.u = dynModel.F0 ./ (myPerf.Zpto + dynModel.Zi);
    
    % position
    myPerf.pos = myPerf.u ./ (1i * dynModel.w);
    
    % PTO force
    myPerf.Fpto = -1 * myPerf.Zpto .* myPerf.u;
    
    % power
    myPerf.pow = 0.5 * myPerf.Fpto .* conj(myPerf.u);
    
    myPerf.ph = dynModel.ph;
    myPerf.w = dynModel.w;
    myPerf.eta = dynModel.eta_fd;
    myPerf.F0 = dynModel.F0;

end

function myPerf = psControl(dynModel,delta_Zmax,delta_Fmax)
%     motion = getPSCoefficients(motion, delta_Zmax, delta_Fmax);
%     ps.wave_amp = waveAmp; % TODO
%     
%     % Use mutliple phase realizations for PS at the model
%     % is nonlinear (note that we use the original phasing
%     % from the other cases)
%     n_ph = 5;
%     ph_mat = [ph, rand(length(ps.w), n_ph-1)];
%     
%     n_freqs = length(motion.w);
%     phasePowMat = zeros(n_ph, 1);
%     powPerFreqMat = zeros(n_freqs, n_ph);
%     
%     for ind_ph = 1 : n_ph
%         
%         ph = ph_mat(:, ind_ph);
% %         [powTot, fRes(ind_ph), tRes(ind_ph)] = getPSPhasePower(ps, ph);
%         [pow, powPerFreq] = getPSPhasePower(motion, ph)
%         phasePowMat(ind_ph) = powTot;
%         powPerFreqMat(:, ind_ph) = fRes(ind_ph).pow;
%         
%     end
%     
%     ph = ph_mat(:,1);
%     u = fRes(1).vel;
%     pos = fRes(1).pos;
%     Zpto = nan(size(motion.hydro.Zi)); % TODO
%     Fpto = fRes(1).u;
%     pow = powPerFreqMat(:,1);

    arguments
        dynModel (1, 1) struct
        delta_Zmax (1,:) double {mustBeFinite,mustBeReal,mustBePositive}
        delta_Fmax (1,:) double {mustBeFinite,mustBeReal,mustBePositive}
    end
        
    % Fix random seed <- Do we want this???
    rng(1);
    
    % Reformulate equations of motion
    dynModel = getPSCoefficients(dynModel, delta_Zmax, delta_Fmax);
    
    % Add phase realizations
    n_ph = 5;
    ph_mat = [dynModel.ph, rand(length(dynModel.w), n_ph-1) * 2 * pi];

    for ind_ph = 1 : n_ph
        
        ph = ph_mat(:, ind_ph);
        [phasePowMat(ind_ph), fRes(ind_ph), tRes(ind_ph)] = ...
            getPSPhasePower(dynModel, ph);
        
        
        pos(:, ind_ph) = fRes(ind_ph).pos;
        u(:, ind_ph) = fRes(ind_ph).vel;
        Zpto(:, ind_ph) = fRes(ind_ph).Zpto;
        Fpto(:, ind_ph) = fRes(ind_ph).u;
        pow(:, ind_ph) = fRes(ind_ph).pow;
        eta(:, ind_ph) = fRes(ind_ph).eta;
        F0(:, ind_ph) = fRes(ind_ph).F0;
        
    end
    
    % assemble results
    myPerf = Performance();
    myPerf.w = dynModel.w;
    myPerf.eta = eta;
    myPerf.F0 = F0;
    myPerf.ph = ph_mat;
    myPerf.u = u;
    myPerf.pos = pos;
    myPerf.Zpto = Zpto;
    myPerf.Fpto = Fpto;
    myPerf.pow = pow;
    
end

function dynModel = getPSCoefficients(dynModel, delta_Zmax, delta_Fmax)
    % getPSCoefficients   constructs the necessary coefficients and
    % matrices used in the pseudospectral control optimization
    % problem
    %
    % Note that these coefficients are not sea state dependent,
    % thus it is beneficial to find them once only when doing a
    % study involving multiple sea states.
    %
    % Bacelli 2014: Background Chapter 4.1, 4.2; RM3 in section 6.1
    
    % Number of frequency - half the number of Fourier coefficients
    Nf = length(dynModel.w);
    
    % Collocation points uniformly distributed between 0 and T
    % note that we have 2*Nf collocation points since we will have
    % two Fourier coefficients for each frequency
    Nc = (2*Nf) + 2;
    
    % Rebuild frequency vector to ensure monotonically increasing
    % with w(1) = w0
    w0 = dynModel.dw;                    % fundamental frequency
    T = 2 * pi/w0;                  % '' period
    
    % Building cost function component
    % we will form the cost function as transpose(x) * H x, where x
    % is a vector of [vel, u]; we want the product above to result
    % in power (u*vel)
    H = [0,1;1,0];
    H_mat = 0.5 * kron(H, eye(2*Nf));
    
    % Building matrices B33 and A33
    Adiag33 = zeros(2*Nf-1,1);
    Bdiag33 = zeros(2*Nf,1);
    
    Adiag33(1:2:end) = dynModel.w.* dynModel.A;
    Bdiag33(1:2:end) = dynModel.B;
    Bdiag33(2:2:end) = Bdiag33(1:2:end);
    
    Bmat = diag(Bdiag33);
    Amat = diag(Adiag33,1);
    Amat = Amat - Amat';
    
    G = Amat + Bmat;
    
    B = dynModel.Bf * eye(2*Nf);
    C = blkdiag(dynModel.K * eye(2*Nf));
    M = blkdiag(dynModel.mass * eye(2*Nf));
    
    % Building derivative matrix
    d = [dynModel.w(:)'; zeros(1, length(dynModel.w))];
    Dphi1 = diag(d(1:end-1), 1);
    Dphi1 = (Dphi1 - Dphi1');
    Dphi = blkdiag(Dphi1);
    
    % scaling factor to improve optimization performance
    m_scale = dynModel.mass;
    
    % equality constraints for EOM
    P =  (M*Dphi + B + G + (C / Dphi)) / m_scale;
    Aeq = [P, -eye(2*Nf) ];
    Aeq = [Aeq,            zeros(2*Nf,2);
        zeros(1,4*Nf), dynModel.K / m_scale, -1];
    
    % Calculating collocation points for constraints
    tkp = linspace(0, T, 4*(Nc));
    tkp = tkp(1:end);
    Wtkp = dynModel.w*tkp;
    Phip1 = zeros(2*size(Wtkp,1),size(Wtkp,2));
    Phip1(1:2:end,:) = cos(Wtkp);
    Phip1(2:2:end,:) = sin(Wtkp);
    
    Phip = blkdiag(Phip1);
    
    A_ineq =  [kron([1 0], Phip1' / Dphi1), ones(4*Nc,1), zeros(4*Nc,1)];
    A_ineq = [A_ineq; -A_ineq];
    
    % position constraints
    if length(delta_Zmax)==1
        B_ineq = [ones(size(A_ineq, 1),1) * delta_Zmax];
    else
        B_ineq = [ones(size(A_ineq, 1)/2,1) * max(delta_Zmax);
            -ones(size(A_ineq, 1)/2,1) * min(delta_Zmax)];
    end
    
    % force constraints
    siz = size(A_ineq);
    forc =  [kron([0 1], Phip'), zeros(4*Nc,1), ones(4*Nc,1)];
    if length(delta_Fmax)==1
        B_ineq = [B_ineq; ones(siz(1),1) * delta_Fmax/m_scale];
    else
        B_ineq = [B_ineq; ones(siz(1)/2,1) * max(delta_Fmax)/m_scale;
            -ones(siz(1)/2,1) * min(delta_Fmax)/m_scale];
    end
    A_ineq = [A_ineq; forc; -forc];
    
    dynModel.Nf = Nf;
    dynModel.T = T;
    dynModel.H_mat = H_mat;
    dynModel.tkp = tkp;
    dynModel.Aeq = Aeq;
    dynModel.A_ineq = A_ineq;
    dynModel.B_ineq = B_ineq;
    dynModel.Phip = Phip;
    dynModel.Phip1 = Phip1;
    dynModel.Dphi = Dphi;
    dynModel.mass_scale = m_scale;
end

function [powTot, fRes, tRes] = getPSPhasePower(dynModel, ph)
    % getPSPhasePower   calculates power using the pseudospectral
    % method given a phase and a descrption of the body movement.
    % Returns total phase power and power per frequency

    eta_fd = dynModel.wave_amp .* exp(1i*ph);
    E3 = dynModel.Hex .* eta_fd;
    
    fef3 = zeros(2*dynModel.Nf,1);
    
    fef3(1:2:end) =  real(E3);
    fef3(2:2:end) = -imag(E3);
    
    Beq = [fef3; 0] / dynModel.mass_scale;
    
    % constrained optimization settings
    qp_options = optimoptions('fmincon',  ...
        'Algorithm', 'sqp',               ...
        'Display', 'off',                 ...
        'MaxIterations', 1e3,             ...
        'MaxFunctionEvaluations', 1e5,    ...
        'OptimalityTolerance', 1e-8,      ...
        'StepTolerance', 1e-8);
    
    siz = size(dynModel.A_ineq);
    X0 = zeros(siz(2),1);
    [y, fval, exitflag, output] = fmincon(@pow_calc,...
        X0,...
        dynModel.A_ineq,...
        dynModel.B_ineq,...
        dynModel.Aeq,...         % Aeq and Beq are the hydrodynamic model
        Beq,...
        [], [], [],...
        qp_options);
    
    %     if exitflag ~= 1      % for debugging
    %         disp(exitflag)
    %         disp(output)
    %     end
    
    % y is a column vector containing [vel; u] of the
    % pseudospectral coefficients
    tmp = reshape(y(1:end-2),[],2);
    x1hat = tmp(:,1);
    uhat = tmp(:,2);
    
    % find the spectra
    ps2spec = @(x) (x(1:2:end) - 1i * x(2:2:end));  % TODO - probably make this a global function
    velFreq = ps2spec(x1hat);
    posFreq = velFreq ./ (1i * dynModel.w);
    uFreq = dynModel.mass_scale * ps2spec(uhat);
    powFreq = 1/2 * uFreq .* conj(velFreq);
    zFreq = uFreq ./ velFreq;
    
    % find time histories
    spec2time = @(x) dynModel.Phip' * x;              % TODO - probably make this a global function
    velT = spec2time(x1hat);
    posT = y(end-1) + (dynModel.Phip' / dynModel.Dphi) * x1hat;
    uT = dynModel.mass_scale * (y(end) + spec2time(uhat));
    powT = 1 * velT .* uT;
    
    powTot = trapz(dynModel.tkp, powT) / (dynModel.tkp(end) - dynModel.tkp(1));
    assert(WecOptTool.math.isClose(powTot, sum(real(powFreq)),...
        'rtol', eps*1e2),...
        sprintf('Mismatch in PS results\n\tpowTot: %.3e\n\tpowFreq: %.3e',...
        powTot,sum(real(powFreq))))
    
    % assemble outputs
    fRes.pos = posFreq;
    fRes.vel = velFreq;
    fRes.u = uFreq;
    fRes.pow = powFreq;
    fRes.Zpto = zFreq;
    fRes.eta = eta_fd;
    fRes.F0 = E3;
    
    tRes.pos = posT;
    tRes.vel = velT;
    tRes.u = uT;
    tRes.pow = powT;
    
    function P = pow_calc(X)
        P = X(1:end-2)' * dynModel.H_mat * X(1:end-2); % 1/2 factor dropped for simplicity
    end
end

% Copyright 2020 National Technology & Engineering Solutions of Sandia, 
% LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the 
% U.S. Government retains certain rights in this software.
%
% This file is part of WecOptTool.
% 
%     WecOptTool is free software: you can redistribute it and/or modify
%     it under the terms of the GNU General Public License as published by
%     the Free Software Foundation, either version 3 of the License, or
%     (at your option) any later version.
% 
%     WecOptTool is distributed in the hope that it will be useful,
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%     GNU General Public License for more details.
% 
%     You should have received a copy of the GNU General Public License
%     along with WecOptTool.  If not, see <https://www.gnu.org/licenses/>.

To find the performance of a device, a separate step (Simulating device response) is used. For WaveBot, this is codified in the simulateDevice.m, function, which has the following signature:

performance = simulateDevice(hydro, seastate, controlType, options)

The arguments for simulateDevice.m are:

The options argument can be used to define device properties that are not directly related to the hydrodynamics. For example, in the WaveBot example the user can set the maximum displacement (Zmax) and maximum PTO force (Fmax) at this point. Additionally, solver settings such as the linear interpolation method (interMethod) can be defined.

3.4. Reporting results

See the entire file
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
classdef Performance < handle
    
    properties
        w (:,:) double {mustBeFinite,mustBeReal,mustBePositive}
        ph (:,:) double {mustBeFinite,mustBeReal}
        eta (:,:) double {mustBeFinite}
        F0 (:,:) double {mustBeFinite}
        u (:,:) double {mustBeFinite}
        pos (:,:) double {mustBeFinite}
        Zpto (:,:) double {}
        Fpto (:,:) double {mustBeFinite}
        pow (:,:) double {mustBeFinite}
        name (1,:) char = 'tmp'
        date (1,1) double {mustBeFinite,mustBePositive} = now
    end
    
    methods
        
        function plotTime(obj, t, options)
            
            arguments
                obj
                t = 0:0.05:obj(1).getRepeatPer()
                options.Interpreter = 'none'
                options.FontSize = 11
            end
            
            fig = figure('Name','Performance.plotTime');
            fig.Position = fig.Position .* [1 1 1 1.5];
            movegui(fig, 'onscreen');
            
            % fields for plotting
            fns = {'eta','F0','pos','u','Fpto','pow'};
            
            for ii = 1:length(fns)
                ax(ii) = subplot(length(fns), 1, ii);
                hold on
                grid on
            end
            
            for jj = 1:length(obj)
                
                for ii = 1:length(fns)
                    timeRes.(fns{ii}) = getTimeRes(obj(jj),fns{ii}, t);
                    plot(ax(ii),t,timeRes.(fns{ii}))
                    ylabel(ax(ii),                              ...
                           fns{ii},                             ...
                           'Interpreter', options.Interpreter,  ...
                           'FontSize', options.FontSize)
                end
                
                for ii = 1:length(ax) - 1
                    set(ax(ii),'XTickLabel',[])
                end
                
                linkaxes(ax,'x')
                xlabel(ax(end),                             ...
                       'Time [s]',                          ...
                       'Interpreter', options.Interpreter,  ...
                       'FontSize', options.FontSize)
               
            end
            
            xlim([t(1), t(end)])
            
            if length(obj) > 1
                l1 = legend(ax(1),                               ...
                            {obj.name},                          ...
                            'Interpreter', options.Interpreter,  ...
                            'FontSize', options.FontSize);
                set(l1, 'NumColumns', length(obj))
            end 
            
        end
        
        function plotFreq(obj, fig, options)
            
            arguments
                obj
                fig = figure;
                options.Interpreter = 'none'
                options.FontSize = 11
            end 
            
            set(fig,'Name','Performance.plotFreq');
            
            fns = {'F0','u','Fpto'};
            mrks = {'o','.','+','s'};
            
            n = length(obj);
            for jj = 1:n
                for ii = 1:length(fns)
                    
                    fv = obj(jj).(fns{ii})(:,1); % use the first column if this is PS
                    
                    % mag plot
                    ax(jj,1) = subplot(2,n,sub2ind([n,2],jj,1));
                    title(obj(jj).name,                         ...
                          'Interpreter', options.Interpreter,   ...
                          'FontSize', options.FontSize)
                    hold on
                    grid on
                    
                    stem(ax(jj,1),                  ...
                         obj(jj).w,                 ...
                         mag2db(abs(fv)),           ...
                         mrks{ii},                  ...
                         'DisplayName', fns{ii},    ...
                         'MarkerSize', 8,           ...
                         'Color', 'b')
                    
                    % phase plot
                    ax(jj,2) = subplot(2,n,sub2ind([n,2],jj,2));
                    hold on
                    grid on
                    
                    stem(ax(jj,2),                  ...
                         obj(jj).w,                 ...
                         angle(fv),                 ...
                         mrks{ii},                  ...
                         'DisplayName', fns{ii},    ...
                         'MarkerSize', 8,           ...
                         'Color', 'b')
                    
                    ylim(ax(jj,2),[-pi,pi])
                    
                end
                
                xlabel(ax(jj,2),                            ...
                       'Frequency [rad/s]',                 ...
                       'Interpreter', options.Interpreter,  ...
                       'FontSize', options.FontSize)
                
            end
            
            ylabel(ax(1,1),                             ...
                   'Magnitude [dB]',                    ...
                   'Interpreter', options.Interpreter,  ...
                   'FontSize', options.FontSize)
            ylabel(ax(1,2),                             ...
                   'Angle [rad]',                       ...
                   'Interpreter', options.Interpreter,  ...
                   'FontSize', options.FontSize)
            legend(ax(n,1),                             ...
                   'Interpreter', options.Interpreter,  ...
                   'FontSize', options.FontSize)
            linkaxes(ax, 'x')
            linkaxes(ax(:,1), 'y')
            
        end
        
        function T = summary(obj)
            
            if length(obj) > 1
                for ii = 1:length(obj)
                    Tr(ii,:) = summary(obj(ii));
                end
                
                % augment names if they are the same
                if any(strcmp(obj(1).name, {obj(2:end).name}))
                    for ii = 1:length(obj)
                        rnames{ii} = [obj(ii).name, '_', num2str(ii)];
                    end
                else
                    rnames = {obj.name};
                end
                
                Tr.Properties.RowNames = rnames;
                mT = Tr;
                
                if nargout
                    T = mT;
                else
                    disp(mT)
                end
                
                return
                
            else
                rnames = {obj.name};
            end
            
            trep = obj.getRepeatPer();
            t = linspace(0,trep,1e3);

            for jj = 1:size(obj.ph,2) % for each phase in PS cases

                tmp.pow_avg(jj) = sum(real(obj.pow(:,jj)));

                pow_t = getTimeRes(obj, 'pow', t, jj);
                tmp.pow_max(jj) = max(abs(pow_t));

                try
                    tmp.pow_thd(jj) = thd(pow_t);
                catch ME
                    warning(ME.message)
                    tmp.pow_thd(jj) = NaN;
                end

                pos_t = getTimeRes(obj, 'pos', t, jj);
                tmp.pos_max(jj) = max(abs(pos_t));

                vel_t = getTimeRes(obj, 'u', t, jj);
                tmp.vel_max(jj) = max(abs(vel_t));

                Fpto_t = getTimeRes(obj, 'Fpto', t, jj);
                tmp.Fpto_max(jj) = max(abs(Fpto_t));
            end

            fn = fieldnames(tmp);
            for kk = 1:length(fn)
                out.(fn{kk}) = mean(tmp.(fn{kk}), 2);
            end
                
            rnames = reshape(rnames,[],1);
            
            mT = table(out.pow_avg(:),out.pow_max(:),out.pow_thd(:),...
                out.pos_max(:),out.vel_max(:),out.Fpto_max(:),...
                'VariableNames',...
                {'AvgPow','|MaxPow|','PowTHD_dBc','MaxPos','MaxVel','MaxPTO'},...
                'RowNames',rnames);
            
            if nargout
                T = mT;
            else
                disp(mT)
            end
            
        end
        
    end
    
    methods (Access=protected)
        
        function [tRep] = getRepeatPer(obj)
            tRep = 2*pi/(obj.w(2) - obj.w(1));
        end
        
        function [timeRes] = getTimeRes(obj, fn, t_vec, ph_idx)
            if nargin < 4
                ph_idx = 1;
            end
            
            if strcmp(fn,'pow')
                vel = obj.getTimeRes('u',t_vec);
                f = obj.getTimeRes('Fpto',t_vec);
                timeRes = vel .* f;
            else
                timeRes = zeros(size(t_vec));
                fv = obj.(fn)(:,ph_idx); % use the first column if this is PS
                for ii = 1:length(obj.w) % for each freq. TODO - use IFFT
                    timeRes = timeRes ...
                        + real(fv(ii) * exp(1i * obj.w(ii) * t_vec));
                end
            end
        end
        
%         function checkSizes(varargin) % TODO
%             n = length(varargin);
%             for ii = 1:n
%                 if ~isequal(varargin(varargin{ii}),size(varargin{1}))
%                     error('Frequency vectors must have same size')
%                 end
%             end
%         end
        
    end
end

% Copyright 2020 National Technology & Engineering Solutions of Sandia,
% LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the
% U.S. Government retains certain rights in this software.
%
% This file is part of WecOptTool.
%
%     WecOptTool is free software: you can redistribute it and/or
%     modify it under the terms of the GNU General Public License as
%     published by the Free Software Foundation, either version 3 of
%     the License, or (at your option) any later version.
%
%     WecOptTool is distributed in the hope that it will be useful,
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%     GNU General Public License for more details.
%
%     You should have received a copy of the GNU General Public
%     License along with WecOptTool.  If not, see
%     <https://www.gnu.org/licenses/>.

The WaveBot example includes the Performance.m class for storing and reporting results. As a final step after simulations are completed, simulateDevice.m populates the fields of this object for return to the user. In addition to storing the results in a systematic structure, this class also provides some basic plotting functionality.

Footnotes

[1]Note that since the hydrodynamics are linear, global scalings of the device can be analyzed without rerunning a BEM calculation.